

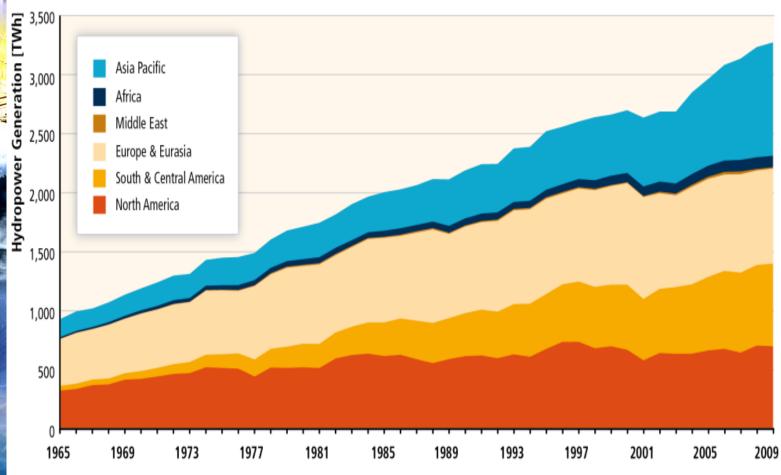



## Role of hydropower in renewable power generation mix

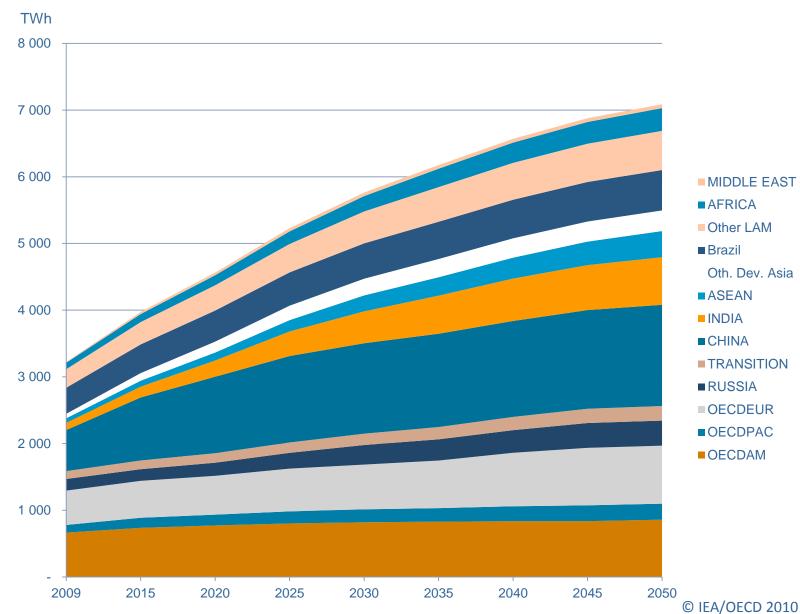


Source: IEA statistics

Hydropower currently supplies 16% of global electricity and is the most important renewable energy source for electricity generation




# Vision for Technology Deployment and CO<sub>2</sub> Abatement


- The Vision is the desired pathway for hydropower's future growth and positioning to reduce CO2 emissions.
- Hydropower has many drivers, which vary based on region, energy needs, market development and public acceptance
- The selected scenario of the IEA *Energy Technology*Perspectives 2012 publication anticipates a global installed hydropower capacity by 2050 of 1947 GW, and generation of near 7 000 TWh, both almost twice the current levels.
- The share of hydropower over total electricity generation would be roughly constant, or even slightly increase.
- 2050 targets would be between 30 to 60% of the estimated technically exploitable potential of hydropower



### **Hydropower: from past growth...**



### ... to future growth in the 2DS



### World's fastest growing economies... leading countries for hydro and dam development

|        | Installed hydro capacity (present) (MW) | Hydro capacity under construction (MW) | Major dams in operation (+ u/c)) |
|--------|-----------------------------------------|----------------------------------------|----------------------------------|
| China  | 147,000                                 | 80,000                                 | 26,000<br>(+68)                  |
| India  | 37,000                                  | 15,371                                 | 2600<br>(+10)                    |
| Brazil | 83,752                                  | 5500                                   | 387<br>(+2)                      |
| Russia | 47,000                                  | 7000                                   | >100<br>(+5)                     |









### **Enablers for Development**

- Socio-economic and environmental issues
- Public Acceptance
- Multipurpose development
- Financial issues
- Technological improvements
- Improving existing facilities
- Network Integration



## Policy framework: Near-term Actions for Stakeholders

#### Vision

1. Each sovereign nation prepare a development plan for hydropower and track progress, taking into account concerns and cross boundary issues.

### Sustainability

- 2. Develop regulatory frameworks for the development of sustainable and appropriate hydropower, that avoid, minimize, mitigate and compensate legitimate and important environmental and social concerns
- 3. Prepare guidance to enable a balanced assessment of all potential impacts and concerns against the benefits of a hydropower project.
- 4. Evaluate existing sustainability protocols and select requirements
- 5. Manage net GHG emissions from reservoirs through measurement and predictive modelling.
- 6. Understand impacts of climate change on water resource/hydropower output



## Policy framework: Near-term Actions for Stakeholders

#### **Public acceptance**

7. Increase and improve dissemination of information to governments and other stakeholders on the role that hydropower in the provision of sustainable energy and contribution to climate change reduction targets.

#### **Financial challenges**

- 8. Streamline processes to reduce the lead times for hydro project assessment and design phases,
- 9. Establish protocols and economic tools to value the non-energy contributions of multi-purpose hydropower developments
- 10. Identify and develop effective financial models to support large numbers of medium scale hydro projects in Africa and other developing regions
- 11. Reduce interconnection costs for small-scale hydropower projects, through regulation, technology, efficient practices and subsidy



### **Technology Development**

| Technology Development                          | Example                                                                             |  |
|-------------------------------------------------|-------------------------------------------------------------------------------------|--|
| Advances in Technology                          | Higher turbine efficiency and performance                                           |  |
| New materials                                   | Materials and coatings for cost reduction and corrosion/abrasion protection         |  |
| Adaptions from existing hydropower technologies | Low-head and kinetic flow turbines for use in canals, pipes and rivers without dams |  |
| Reductions in costs                             | Roller-compacted concrete (RCC) dams                                                |  |
| Environmental benefits                          | <ul><li>Oil-free Kaplan turbines</li><li>Fish friendly turbines</li></ul>           |  |
| Enhanced network integration and stability      | Application of variable speed machines for pumped storage developments              |  |
| Improved controls for network integration       | Increasing need for integration of large amounts of variable renewable generation   |  |
| Improved Development Approaches                 | Off-shore platform,                                                                 |  |
|                                                 | <ul> <li>Comprehensive Vision Based Planning (CVBP)</li> </ul>                      |  |
|                                                 | <ul> <li>IHA's 2010 Hydropower Sustainability<br/>Assessment Protocol</li> </ul>    |  |
|                                                 | © IEA/OECD 2010                                                                     |  |



## Policy framework: Near-term Actions for Stakeholders

Improving existing capacity

- 12. Each sovereign nation inventory existing hydropower generation and "encourage" improvements in output, efficiency and reliability
- 13. Develop guidance for rehabilitation, upgrading or uprating existing hydroplants to increase efficiency, output, capacity and value.
- 14. Identify opportunities to redevelop very old hydropower plants, having obsolete equipment and less than optimum use of the water resource.
- 15. Identify dams originally developed for flood control, irrigation, navigation or drinking water and assess their feasibility for adding hydropower.

**Electric system services: empowering variable renewables** 

- 16. Develop / improve technologies at hydropower plants, to better support the integration of large amounts of variable renewable energy sources.
- 17. Develop guidance to determine the real value of hydropower providing integration services, and mechanisms for remuneration



## Hydropower has a critical role in the goal of halving global energy-related CO<sub>2</sub> emissions by 2050

Future perspectives for large, small and pumped storage hydropower:

- Large hydropower will be a major contributor of renewable energy to the world's energy growth, by managing environmental and social impacts and gaining public acceptance
- Small hydro will continue to supply a growing niche hydropower market and will also adapt technology and applications to meet new opportunities
- Pumped storage will grow in importance as a lowcost and reliable integrator of non-firm renewables, with improved technology and minimum



### Thank you

Niels M Nielsen, Secretary IEA Hydro



30<sup>th</sup> ExCo Meeting, Rovaniemi, Finland, June 2014